👤

in triunghiul ABC , E apartine (AB) , F aparține (AC) , astfel incat AE supra AB = 2 supra 5 si EF paralel cu BC. Calculati valorile următoarelor rapoarte : AE supra EB, AF supra AC , AF supra FC , FC supra AC, AB supra EB , AC supra FC

Răspuns :

Teorema lui Thales:
O paralelă EF la baza BC a unui triunghi ABC împarte laturile AB și AC în segmente proporționale : AE/EB = AF/FC.

Stim ca AE/AB = 2/5; folosim proportii derivate si obtinem ca AE/(AB-AE) = 2/(5-2) => AE/EB = 2/3; imediat avem ca AF/FC = 2/3 si ca AB/AE = 5/2;
Tot din proportii derivate rezulta ca AF/AC = 2/5;
Stim ca FC/AF = 3/2 => FC/AC = 3/5 => AC/FC = 5/3.

Bafta!