Răspuns :
[tex]\displaystyle a).a_4=10,~a_7=19 \\ a_4=10
\Rightarrow a_{4-1}+r=10 \Rightarrow a_3+r=10 \Rightarrow a_1+3r=10 \Rightarrow
\\ \Rightarrow a_1=10-3r \\ a_7=19 \Rightarrow a_{7-1}+r=19 \Rightarrow
a_6+r=19 \Rightarrow a_1+6r=19 \Rightarrow \\ \Rightarrow 10-3r+6r=19
\Rightarrow -3r+6r=19-10 \Rightarrow 3r=9 \Rightarrow r= \frac{9}{3}
\Rightarrow \\ \Rightarrow \boxed{r=3} \\ a_1=10-3r \Rightarrow a_1=10-3 \cdot
3 \Rightarrow a_1=10-9 \Rightarrow \boxed{a_1=1} [/tex]
[tex]\displaystyle b).a_3=-4,~S_{15}=-285\\a_3=-4 \Rightarrow a_{3-1}+r=-4 \Rightarrow a_2+r=-4 \Rightarrow a_1+2r=-4 \Rightarrow \\ \Rightarrow a_1=-4-2r \\ S_{15}=-285 \Rightarrow \frac{2(-4-2r)+(15-1) \cdot r}{2} \cdot 15 =-285 \Rightarrow \\ \Rightarrow \frac{-8-4r+14r}{2}\cdot 15=-285 \Rightarrow \frac{-8+10r}{2} \cdot15=-285 \Rightarrow \\ \Rightarrow -120+150r=2 \cdot (-285) \Rightarrow -120+150r=-570\Rightarrow [/tex]
[tex]\displaystyle \Rightarrow150r=-570+120 \Rightarrow 150r=-450 \Rightarrow r= - \frac{450}{150} \Rightarrow \boxed{r=-3} \\ a_1=-4-2r \Rightarrow a_1=-4-2 \cdot (-3) \Rightarrow a_1=-4+6 \Rightarrow \boxed{a_1=2} [/tex]
[tex]\displaystyle c). \left \{ {{a_2+a_5-a_8=10} \atop {a_1+a_6=17}} \right. \Rightarrow \left \{ {{a_{2-1}+r+a_{5-1}+r-(a_{8-1}+r)=10} \atop {a_1+a_{6-1}+r=17}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_4+r-(a_7+r)=10} \atop {a_1+a_5+r=17}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_1+4r-(a_1+7r)=10} \atop {a_1+a_1+5r=17}} \right. \Rightarrow [/tex]
[tex]\displaystyle \Rightarrow \left \{ {{a_1+r+a_1+4r-a_1-7r=10} \atop {2a_1+5r=17}} \right. \Rightarrow \left \{ {{a_1-2r=10/\cdot (-2)} \atop {2a_1+5r=17}} \right. \Rightarrow \\ \Rightarrow \left \{ {{-2a_1+4r=-20} \atop {2a_1+5r=17}} \right. \\ ~~~~--------- \\ ~~~~~~~~~~/ ~~~~~~9r~= -3 \Rightarrow r=- \frac{3}{9} \Rightarrow \boxed{r=- \frac{1}{3}} [/tex]
[tex]\displaystyle a_1-2r=10 \Rightarrow a_1-2 \cdot \left(- \frac{1}{3} \right)=10 \Rightarrow a_1+ \frac{2}{3} =10 \Rightarrow 3a_1+2=30 \Rightarrow \\ \Rightarrow 3a_1=30-2 \Rightarrow 3a_1=28 \Rightarrow \boxed{a_1= \frac{28}{3} }[/tex]
[tex]\displaystyle d). \left \{ {{a_4+a_8=30} \atop {10a_1-4a_7=-45}} \right. \Rightarrow \left \{ {{a_{4-1}+r+a_{8-1}+r=30} \atop {10a_1-4(a_{7-1}+r)=-45}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_3+r+a_7+r=30} \atop {10a_1-4(a_6+r)=-45 }} \right. \Rightarrow \left \{ {{a_1+3r+a_1+7r=30} \atop {10a_1-4(a_1+6r)=-45}} \right. \Rightarrow \\ \Rightarrow \left \{ {{2a_1+10r=30} \atop {10a_1-4a_1-24r=-45}} \right. \Rightarrow \left \{ {{2a_1+10r=30/\cdot(-3)} \atop {6a_1-24r=-45}} \right. \Rightarrow[/tex]
[tex]\displaystyle \Rightarrow \left \{ {{-6a_1-30r=-90} \atop {6a_1-24r=-45}} \right. \\ ~~~~---------- \\ ~~~~~~~~~/ ~~~-54r=-135 \Rightarrow r= \frac{135}{54} \Rightarrow \boxed{r= \frac{5}{2}} \\ 2a_1+10r=30 \Rightarrow 2a_1+10 \cdot \frac{5}{2} =30 \Rightarrow 2a_1+ \frac{50}{2} =30 \Rightarrow \\ \Rightarrow 2a_1+25=30 \Rightarrow 2a_1=30-25 \Rightarrow 2a_1=5 \Rightarrow \boxed{a_1= \frac{5}{2}} [/tex]
[tex]\displaystyle e). \left \{ {{a_2+a_6+a_9=45} \atop {a_3+a_7+a_{10}=54}} \right. \Rightarrow \left \{ {{a_{2-1}+r+a_{6-1}+r+a_{9-1}+r=45} \atop {a_{3-1}+r+a_{7-1}+r+a_{10-1}+r=54}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_5+r+a_8+r=45} \atop {a_2+r+a_6+r+a_9+r=54}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_1+5r+a_1+8r=45} \atop {a_1+2r+a_1+6r+a_1+9r=54}} \right. \Rightarrow \left \{ {{3a_1+14r=45/ \cdot (-1)} \atop {3a_1+17r=54}} \right. \Rightarrow[/tex]
[tex]\displaystyle \Rightarrow \left \{ {{-3a_1-14r=-45} \atop {3a_1+17r=54}} \right. \\ ~~~~~~~~~~~/ ~~~~~~3r=9 \Rightarrow r= \frac{9}{3} \Rightarrow \boxed{r=3} \\ 3a_1+14r=45 \Rightarrow 3a_1+14 \cdot 3=45 \Rightarrow 3a_1+42=45 \Rightarrow \\ \Rightarrow 3a_1=45-42 \Rightarrow 3a_1=3 \Rightarrow a_1= \frac{3}{3} \Rightarrow \boxed{a_1=1} [/tex]
[tex]\displaystyle b).a_3=-4,~S_{15}=-285\\a_3=-4 \Rightarrow a_{3-1}+r=-4 \Rightarrow a_2+r=-4 \Rightarrow a_1+2r=-4 \Rightarrow \\ \Rightarrow a_1=-4-2r \\ S_{15}=-285 \Rightarrow \frac{2(-4-2r)+(15-1) \cdot r}{2} \cdot 15 =-285 \Rightarrow \\ \Rightarrow \frac{-8-4r+14r}{2}\cdot 15=-285 \Rightarrow \frac{-8+10r}{2} \cdot15=-285 \Rightarrow \\ \Rightarrow -120+150r=2 \cdot (-285) \Rightarrow -120+150r=-570\Rightarrow [/tex]
[tex]\displaystyle \Rightarrow150r=-570+120 \Rightarrow 150r=-450 \Rightarrow r= - \frac{450}{150} \Rightarrow \boxed{r=-3} \\ a_1=-4-2r \Rightarrow a_1=-4-2 \cdot (-3) \Rightarrow a_1=-4+6 \Rightarrow \boxed{a_1=2} [/tex]
[tex]\displaystyle c). \left \{ {{a_2+a_5-a_8=10} \atop {a_1+a_6=17}} \right. \Rightarrow \left \{ {{a_{2-1}+r+a_{5-1}+r-(a_{8-1}+r)=10} \atop {a_1+a_{6-1}+r=17}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_4+r-(a_7+r)=10} \atop {a_1+a_5+r=17}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_1+4r-(a_1+7r)=10} \atop {a_1+a_1+5r=17}} \right. \Rightarrow [/tex]
[tex]\displaystyle \Rightarrow \left \{ {{a_1+r+a_1+4r-a_1-7r=10} \atop {2a_1+5r=17}} \right. \Rightarrow \left \{ {{a_1-2r=10/\cdot (-2)} \atop {2a_1+5r=17}} \right. \Rightarrow \\ \Rightarrow \left \{ {{-2a_1+4r=-20} \atop {2a_1+5r=17}} \right. \\ ~~~~--------- \\ ~~~~~~~~~~/ ~~~~~~9r~= -3 \Rightarrow r=- \frac{3}{9} \Rightarrow \boxed{r=- \frac{1}{3}} [/tex]
[tex]\displaystyle a_1-2r=10 \Rightarrow a_1-2 \cdot \left(- \frac{1}{3} \right)=10 \Rightarrow a_1+ \frac{2}{3} =10 \Rightarrow 3a_1+2=30 \Rightarrow \\ \Rightarrow 3a_1=30-2 \Rightarrow 3a_1=28 \Rightarrow \boxed{a_1= \frac{28}{3} }[/tex]
[tex]\displaystyle d). \left \{ {{a_4+a_8=30} \atop {10a_1-4a_7=-45}} \right. \Rightarrow \left \{ {{a_{4-1}+r+a_{8-1}+r=30} \atop {10a_1-4(a_{7-1}+r)=-45}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_3+r+a_7+r=30} \atop {10a_1-4(a_6+r)=-45 }} \right. \Rightarrow \left \{ {{a_1+3r+a_1+7r=30} \atop {10a_1-4(a_1+6r)=-45}} \right. \Rightarrow \\ \Rightarrow \left \{ {{2a_1+10r=30} \atop {10a_1-4a_1-24r=-45}} \right. \Rightarrow \left \{ {{2a_1+10r=30/\cdot(-3)} \atop {6a_1-24r=-45}} \right. \Rightarrow[/tex]
[tex]\displaystyle \Rightarrow \left \{ {{-6a_1-30r=-90} \atop {6a_1-24r=-45}} \right. \\ ~~~~---------- \\ ~~~~~~~~~/ ~~~-54r=-135 \Rightarrow r= \frac{135}{54} \Rightarrow \boxed{r= \frac{5}{2}} \\ 2a_1+10r=30 \Rightarrow 2a_1+10 \cdot \frac{5}{2} =30 \Rightarrow 2a_1+ \frac{50}{2} =30 \Rightarrow \\ \Rightarrow 2a_1+25=30 \Rightarrow 2a_1=30-25 \Rightarrow 2a_1=5 \Rightarrow \boxed{a_1= \frac{5}{2}} [/tex]
[tex]\displaystyle e). \left \{ {{a_2+a_6+a_9=45} \atop {a_3+a_7+a_{10}=54}} \right. \Rightarrow \left \{ {{a_{2-1}+r+a_{6-1}+r+a_{9-1}+r=45} \atop {a_{3-1}+r+a_{7-1}+r+a_{10-1}+r=54}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_5+r+a_8+r=45} \atop {a_2+r+a_6+r+a_9+r=54}} \right. \Rightarrow \\ \Rightarrow \left \{ {{a_1+r+a_1+5r+a_1+8r=45} \atop {a_1+2r+a_1+6r+a_1+9r=54}} \right. \Rightarrow \left \{ {{3a_1+14r=45/ \cdot (-1)} \atop {3a_1+17r=54}} \right. \Rightarrow[/tex]
[tex]\displaystyle \Rightarrow \left \{ {{-3a_1-14r=-45} \atop {3a_1+17r=54}} \right. \\ ~~~~~~~~~~~/ ~~~~~~3r=9 \Rightarrow r= \frac{9}{3} \Rightarrow \boxed{r=3} \\ 3a_1+14r=45 \Rightarrow 3a_1+14 \cdot 3=45 \Rightarrow 3a_1+42=45 \Rightarrow \\ \Rightarrow 3a_1=45-42 \Rightarrow 3a_1=3 \Rightarrow a_1= \frac{3}{3} \Rightarrow \boxed{a_1=1} [/tex]
Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Sperăm că informațiile oferite v-au fost utile. Dacă aveți întrebări sau aveți nevoie de asistență suplimentară, nu ezitați să ne contactați. Așteptăm cu nerăbdare să vă revedem și nu uitați să ne salvați în lista de favorite!