👤

Fie numerele x=2011+2(1+2+3+...+2010) si y=1+3+5+...+2011
a) Sa se arate ca sunt patrate perfecte
b) Sa se arate ca 2011+x<4*y
P.S. *=inmultit


Răspuns :

1+2+3+...+2010 = 
2010*2011 / 2

x= 2011+2* 2010*2011/2  2 cu 2 se simplifica si ramane 
x=2011+2010*2011
x=2011(1+2010*1)
x=2011*2011 => patrat perfect

y=1+3+5+...+2011
Exista o formula
1+3+5+..+2n-1=n*n
2n-n=2011
2n=2012
n=1006

atunci 1+3+5+...+2011 = 1006*1006 => numarul e patrat perfect 

2011+x<4*y
2011+2011*2011<4*1006*1006  Facem babeste 
4046132< 4048144  Adevarat