👤

f'(x) = (x-1) e^x
Demonstrați ca f'(x) > sau = -1


Răspuns :

F'(X)=f(x), [tex][(x-1) * e^{x}]' = e^{x} (x-1+1) = e^{x} *x
f'(x) = (e^{x} * x) ' = e^{x} (x+1) \geq -1 [/ deoarece  e aprox 2,7 deci > -1 si x+1  \geq -1