👤

Fie paralelogramul ABCD și punctele P€(AB), {M}= PCΠBD, {N}= PDΠAC, {O}= ACΠBD.
să se demonstreze că OM/MD + ON/NC= 1/2.
( Π -> intersectat cu; / -> supra)
și uitaţi un desen:


Fie Paralelogramul ABCD Și Punctele PAB M PCΠBD N PDΠAC O ACΠBD Să Se Demonstreze Că OMMD ONNC 12 Π Gt Intersectat Cu Gt Supra Și Uitaţi Un Desen class=

Răspuns :

Constructie ajutatoare : ducem prin O paralela EF||DC ; E∈[AD] si F∈[BC]. Notam  EF Π PC={X} si EF Π PD={Y}.
Din OX||DC (prin Teorema Fundamentala a Asemanarii- pe scurt TFA)⇒ΔMOX asemenea ΔMDC ⇒ OM/MD=OX/DC (1) , analog :
Din OY||DC (prin TFA)⇒ΔNOY asemenea ΔNCD⇒ON/NC=OY/DC (2) Se aduna relatiile (1) cu (2)⇒OM/MD + ON/NC=(OX+OY)/DC=XY/DC=(DC/2)/DC=1/2. Am inlocuit pe XY cu DC/2 deoarece in ΔPDC segmentul [XY] este linie mijlocie.