👤

Aduceti la o forma mai simpla expresia:
E(x)=[([tex] \frac{x-1}{x+1} [/tex]) la a doua - [tex] \frac{2x-2}{x+1} [/tex] +1] : [tex]\frac{4}{ x^{2} -1} [/tex] ; x ∈ R \ {-1;1}.
Va rooog ajutati-ma repede, dau coroana!


Răspuns :

E(x)=[(x-1)²/(x+1)² -(2x-2)/(x+1)+1]: 4/(x²-1) =
=[(x²-2x+1)/(x+1)² -2(x-1)(x+1)/(x+1)² +(x²+2x+1)/(x+1)²]: 4/(x-1)(x+1) =
=(x²-2x+1 -2x²+2+x²+2x+1)/(x+1)² × (x-1)(x+1)/4 =
=4/(x+1) × (x-1)/4 =
=(x-1)/(x+1)