👤

(2a+5b) la puterea a 2a
(X-5)(x+5)(x {2} +25)
{2}= la puterea a 2a
(X+3)(x+4)+(x{3} - 12x):x
(X{2} + 3x) {2} - (x{4} - 4x{2})
v=radical din
(v5+v3){2} + (3v5 +v6)(3v5-v6)- v60
(X{2} -3x +2){2} - (3x-2){2}

Sper ca se înțelege. Numerele din acolade sunt puterile, iar "v"-ul este radicalul. Ofer coroana.


Răspuns :

a)[tex](x-5)(x+5)( x^{2} +25)\ \textless \ =\ \textgreater \ ( x^{2} -25)( x^{2} +25)= x^{4}-625 [/tex]

b)[tex](9x+3)(x+4)+( \frac{x^{3}-12x}{x} )\ \textless \ =\ \textgreater \ 9 x^{2} +39x+12+ \frac{ x^{3}-12x }{x} [/tex]<=>[tex] x^{3}-12x+9 x^{3}+39 x^{2} +12x\ \textless \ =\ \textgreater \ 10 x^{3}+39 x^{2} [/tex]

c)[tex]( x^{2} +3x) ^{2} -( x^{4} -4 x^{2} )\ \textless \ =\ \textgreater \ x^{4} +6 x^{3} +9 x^{2} - x^{4}+4 x^{2} [/tex]<=>[tex]6 x^{3}+13 x^{2} [/tex]

d)[tex]( \sqrt{5}+ \sqrt{3}) ^{2}+(3 \sqrt{5} + \sqrt{6})( 3 \sqrt{5} -\sqrt{6})- \sqrt{60} [/tex]<=>[tex]5+10+45-6- \sqrt{60} =54- \sqrt{60} [/tex]

e)[tex]( x^{2} -3x+2) ^{2} -(3x-2) ^{2} = x^{4} +9 x^{2} +4-9 x^{2} +12x-4= x^{4} +12x[/tex]

In imaginea atasata ai formulele.



Vezi imaginea BOGDANOVICI