👤

Aflati doua numere ce au diferenta 9,75 iar unul din numere este de 1,5 ori mai mare decat celalalt.

Răspuns :

a-b=[tex] \frac{975}{100} [/tex]
a=[tex] \frac{15}{10} *b[/tex]
[tex] \frac{15}{10}*b-b= \frac{975}{100} [/tex]   (se amplifica b cu 10 si se obtine) 
[tex] \frac{15b-10b}{10} = \frac{975}{100} [/tex]
[tex] \frac{5b}{10} = \frac{975}{100} [/tex]
100*5b=975*10
[tex]5b= \frac{975*10}{100} = \frac{195}{2} [/tex]
[tex]b= \frac{195}{2} : 5 = \frac{195}{2} * \frac{1}{5} = \frac{39}{2} [/tex]
[tex]a= \frac{15}{10} * \frac{39}{2} = \frac{585}{20} = \frac{117}{4} [/tex]

Verificare: 39/2 = 19.5 si 117/4=29.25; 29.25-19.5=9.75