formula radicali compusi
√(a+√b)=√[(a+√a²-b)/2]+√[(a-√a²-b)/2]
√(a-√b)=√[(a+√a²-b)/2]-√[(a-√a²-b)/2]
√(3-2√2)=√(3-√8)=√(3+√9-8)/2-√(3-√9-8)/2=√(3+1)/2-√(3-1)/2=
=√4/2-√2/2=√2-1
√(7-4√3)=√(7-√48)=√(7+√49-48)/2-√(7-√49-48)/2=√(7+1)/2-√(7-1)/2=
=√8/2-√6/2=2-√3
√(4-2√3)=√(4-√12)=√(4+√16-12)/2-√(4-√16-12)/2=√(4+2)/2-√(4-2)/2=
=√6/2-√2/2=√3-1
√(3+2√2)=√(3-√8)=√(3+√9-8)/2+√(3-√9-8)/2=√(3+1)/2+√(3-1)/2=
=√4/2+√2/2=√2+1
x√(3-2√2)+y√(7-4√3)=x√2-y√3+4
x√(4-2√3)+y√(3+2√2)=x√3+y√2+1
x(√2-1)+y(2-√3)=x√2-y√3+4
x(√3-1)+y(√2+1)=x√3+y√2+1
x√2-x+2y-y√3=x√2-y√3+4
x√3-x+y√2+y=x√3+y√2+1
-x+2y=4
-x+y=1
-x+2y=4
x-y=-1
y=3
x=y-1=3-1=2