Primele trei numere naturale prime sunt: 2:3:5 =>{x,y,z} d.p. {2,3,5} => x/2=y/3=z/5=k => x=2k ; y=3k ; z=5k . Le inlocuim in a doua relatie si obtinem: 2k*3k+3k*5k+ 2k*5k=5k <=>6k^2+15k^2+10k^2=5k <=>31k^2=5k Impartim relatia cu k si obtinem : 31k=5 => k=5/31 =>x=10/31 ; y=15/31 ; z=25/31