👤

Multimea valorilor lui a∈R pentru care valorile functie f:R->R, f(x)=[tex] \frac{x^2-ax+1}{x^2+1} [/tex] , sunt cuprinse in intervalul (0,3), este:
Cum se rezolva?


Răspuns :

Pui  conditia  ca  0<f(x)<3. Obtii  un  sistem  de  2  inecuatii  .
1)  (x²-ax+1)/(x²+1)>0  =>x²-ax+1>0  calculezi  determinantuul  Δ si  pui  conditia  sa  fie  negativ.  Deci a²-4<0  =>  a ∈(-2, 2)  (1

2) (x²-ax+1)/(x²+1)<3  dupa  calcule  se  ajunge  la
2x²+ax+2>0  Pui  conditia  ca Δ=a²-16<0  =>a∈(-4 ,4)
intersectezi  cu  rezultatul  de  la  (1  si  obtii
a=(-2 ,2)