👤

Să se găsească toate nr nat n<200 care împărțite la 5;6 si respectiv 8 dau restul 3 de fiecare data

Răspuns :

n=5a+3
n=6b+3
n=8c+3,        sau

n-3=5a
n-3=6b
n-3=8c.........unde a,b, c sunt caturile. Observam ca (n-3) se imparte SIMULTAN la 5,6 si 8, inseamna ca (n-3) e egal cu cel mai mic multiplu comun al nr 5,6 si 8, care e 120, deci (n-3) e multiplu de 120 si poate fi scris sub forma
n-3=120k, unde k=1,2,3.....
pt k=1, rezulta n-3=120, deci n=120+3=123
pt k=2, rezulta n-3=120x2=240, deci n=243, solutie care nu convine pt ca e mai mare ca 200, deci solutia e n=123