👤

Scrieti expresia sub forma de fractie algebrica ireductibila pe domeniul valorilor admisibile:
x-3/x+3 - x+3/3-x + 12x/x^2-9
Multumesc anticipat !


Răspuns :

[tex] \frac{x-3}{x+3} - \frac{x+3}{x-3} + \frac{12x}{(x-3)(x+3} [/tex]
[tex] \frac{(x-3) ^{2}- (x+3)^{2} +12x }{(x-3)(x+3)} [/tex]
[tex] \frac{ x^{2} -6x+9- x^{2} -6x-9+12x}{(x-3)(x+3)} [/tex]
[tex] \frac{0}{(x+3)(x-3)} =0[/tex]
x≠-3
x≠3