👤

fie a,b,c trei numere intregi,pozitive,astfel incat ab < c. aratati ca a+b mai mic sau egal cu c

Răspuns :

Mai intai demonstram ca:
[tex]a+b\leq ab+1[/tex]
Ducem totul in partea din stanga
[tex]a-ab+b-1\leq 0\Rightarrow a(1-b)-(1-b)\leq 0\Rightarrow (1-b)(a-1)\leq 0[/tex]
a si b sunt numere intregi pozitive atunci
[tex]a\geq 1\Rightarrow a-1\geq 0[/tex]
[tex]b\geq 1\Rightarrow 0\geq 1-b[/tex]
Deci daca le inmultim pe cele doua, obtinem relatia de mai sus
[tex](1-b)(a-1)\leq 0[/tex] Se confirma. Deci prima relatie este adevarata. Acum ne folosim de relatia data in text
[tex]ab<c\Rightarrow ab\leq c-1[/tex] pentru ca produs de numere intregi pozitive da tot nr pozitiv intreg
Atunci
[tex]a+b\leq ab+1\leq c-1+1=c[/tex]