👤

Suma a doua numere naturale este 32 mai mare decât diferența lor. Dacă împărțim suma la diferența lor, obținem catul 2 și restul 8 . Aflați cele doua numere !

Răspuns :

a+b=32+(a-b)

(a+b)/(a-b)=2 rest 8

[32+(a-b)]/(a-b)=2 rest8

[32/(a-b)]+(a-b)/(a-b)=2 rest 8

32/(a-b)+1=2 rest 8

32/(a-b)=2 rest 8 -1

32/(a-b)=1rest8

D=CxI+R

32=1x(a-b)+8

32=(a-b)+8

a-b=32-8=24

a+b=32+(a-b)

a+b=32+24

a+b=56

a-b=24

adunam egalitatile a+b cu a-b si rezulta

a+a-b+b=24+56

2a=80

a=80/2=40

a-b=24

40-b=24

b=40-24=16