daca M se afla pe OX :
M1A = √[(xA - xM)² + (yA² - yM)²] = √[(1-x)² + 9] yM1 = 0
M1B = √[(xB- xM)² + (yB - yM)²] = √[(5 - x)² + 9]
(1-x)² + 9 + (5-x)² + 9 = 36 1 -2x + x² + 25 - 10x + x² = 18
2x² - 12x = - 8 x² - 6x + 4 = 0 x1 = 3 + √5 x2 = 3- √5 M1(3+√5,0) sau M1(3-√5, 0)
daca M se afla pe Oy: xM2 = 0
M2A² = 1 +(y - 1)² M2B ² = 25 + (y -3)²
1+ y² - 2y + 1 + 25 + y² - 6y +9 = 36 2y² - 8y = 0 y1 = 0 M2(0,0) y2=4 M2(0,4)