👤

ajutor de la problema 10 în jos va rog

Ajutor De La Problema 10 În Jos Va Rog class=

Răspuns :

x→1    x<1  lim x^4/(x-1(x²+x+1)=1/3*lim x^4/(x-1)=1/3*1/(1-0-1)=1/-0=-∞
x→1, x>1   1/3 lim 1/(1+0-1)=1/3*1/+0=+∞
Ex  11  este  gesit  pt  ca  daca  x=1  numitorul  e  0  si  functia ->∞,  nu  admite  tangenta
Ex 10
f(1)=3+m+n)/2=2
m+n=1  formula  1
L=lim  (1-1+f(x)/3)^x
=(1+(-3x^2-+3x^2+mx+n)/(3x^2+3)]^x
=lim(1+(mx+n)/(3x^2+3)]^x
Ridici paranteza  dreapta  la  puterea  (3x^2+3)/(mx+n)*(mx+n)/(3x^2+3)=1
L=lim  [1+(mx+n)/(3x^2+3)]^[(3x^2+3)/(mx+n)]^x*(mx+n)*x/(3x²+3)]=e^lim(mx²+nx)/(3x²+3)
Pui  conditia  ca  limita  de  la  exponent sa  fie  2.asta  presupune  ca m=6
inlocuiesti  aceasta  valoare  in  formula  1 si  afli  pe  n
n=-5