[tex]x^2-Sx+P=0 \\\\ x_1+x_2=S \ \ \ \ \textless \ =\ \textgreater \ \ \ \ 1-\sqrt{3}+1+\sqrt{3}=S \longrightarrow \underline{S=2} \\\\\\ x_1*x_2=P \ \ \ \ \textless \ =\ \textgreater \ \ \ \ (1-\sqrt{3})(1+\sqrt{3})=P \longrightarrow \underline{P=-2}\\\\ \hbox{Rezultatele pentru S si P exista atunci cand este indeplinita conditia:}\\\\\\ \underline{S^2-4P \geq0}\\\\\\ 4-4*(-2)\geq 0\\\\\ 12\geq 0 \ \ \ 'A'\\\\\\\\ \boxed{\boxed{x^2-2x-2=0}}[/tex]