Răspuns :
Cerinta:
"Gaseste numerele naturale de patru cifre care au suma cifrelor noua"
Rezolvare:
Vom nota cu abcd numerele naturale de patru cifre
a,b,c,d - cifre; a,b,c,d∈{0,1,2,3,4,5,6,7,8,9};a ≠ 0
a+b+c+d = 9
Analizam ce valoare poate lua a (9 cazuri) apoi ce valoare poate lua b
Ne înarmăm cu răbdare și începem să scriem :)
- a = 1 ⇒ b+c+d =8
b = 0 ⇒ c+d=8 ⇒ cd∈{08,80,17,71,62,26,35,53,44}
abcd ∈ {1008,1080,1017,1071,1062,1026,1035,1053,1044} -9 nr
b = 1⇒c+d=7⇒cd∈{07,70,16,61,25,52,34,43}
abcd∈{1107, 1170, 1116, 1161, 1125, 1152, 1134, 1143} -8 nr
b = 2⇒c+d=6⇒cd∈{06,60,15,51,24,42,33}
abcd∈{1206, 1260, 1251, 1215, 1224, 1242, 1233} -7 nr
b = 3⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{1305,1350,1314,1341,1323,1332} -6 nr
b = 4⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{1404,1440,1413,1431,1422} -5 nr
b = 5⇒c+d=3⇒ cd∈{03,30,12,21}⇒abcd∈{1503,1530,1512,1521} -4 nr
b = 6 ⇒c+d=2⇒ cd∈{02,20,11}⇒abcd∈{1602,1620,1611} -3 nr
b = 7 ⇒c+d=1⇒ cd∈{01,10}⇒abcd∈{1701,1710} -2 nr
b = 7⇒c+d=0⇒cd=00 ⇒ abcd = 1800 -1 nr
- a = 2 ⇒ b+c+d =7
b = 0 ⇒c+d=7⇒cd∈{07,70,16,61,25,52,34,43}
abcd∈{2007,2070,2016,2061,2025,2052,2034,2043} -8 nr
b = 1⇒c+d=6⇒cd∈{06,60,15,51,24,42,33}
abcd∈{2106, 2160, 2151, 2115, 2124, 2142, 2133} -7 nr
b = 2⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{2205, 2250, 2214, 2241, 2223, 2232} -6 nr
b = 3⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{2304,2340,2313,2331,2322}
b = 4⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{2403,2430,2412,2421} -4 nr
b = 5⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{2502,2520,2511} -3 nr
b = 6⇒c+d=1⇒cd∈{01,10}⇒abcd∈{2601,2610} -2 nr
b = 7⇒c+d=0⇒cd=00 ⇒ abcd = 2700 -1 nr
- a = 3 ⇒ b+c+d =6
b = 0 ⇒c+d=6⇒cd∈{06,60,15,51,24,42,33}
abcd∈{3006,3060,3015,3051,3024,3042,3033} -7 nr
b = 1⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{3105,3150,3141,3114,3123,3132} -6 nr
b = 2⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{3204,3240,3213,3231,3222}
b = 3⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{3303,3330,3312,3321} -4 nr
b = 4⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{3402,3420,3411} -3 nr
b = 5⇒c+d=1⇒cd∈{01,10}⇒abcd∈{3501,3510} -2 nr
b = 6⇒c+d=0⇒cd=00 ⇒ abcd = 3600 -1 nr
- a = 4 ⇒ b+c+d =5
b = 0⇒c+d=5⇒cd∈{05,50,41,14,23,32}
abcd∈{4005,4050,4014,4041,4023,4032} -6 nr
b = 1⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{4104,4140,4113,4131,4122}
b = 2⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{4203,4230,4212,4221} -4 nr
b = 3⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{4302,4320,4311} -3 nr
b = 4⇒c+d=1⇒cd∈{01,10}⇒abcd∈{4401,4410} -2 nr
b = 5⇒c+d=0⇒cd=00 ⇒ abcd = 4500 -1 nr
- a = 5 ⇒ b+c+d =4
b = 0⇒c+d=4⇒cd∈{04,40,13,31,22}⇒abcd∈{5040,5004,5013,5031,5022}
b = 1⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{5103,5130,5112,5121} -4 nr
b = 2⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{5202,5220,5211} -3 nr
b = 3⇒c+d=1⇒cd∈{01,10}⇒abcd∈{5301,5310} -2 nr
b = 4⇒c+d=0⇒cd=00 ⇒ abcd = 5400 -1 nr
- a = 6 ⇒ b+c+d =3
b = 0⇒c+d=3⇒cd∈{03,30,12,21}⇒abcd∈{6003,6030,6012,6021} -4 nr
b = 1⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{6102,6120,6111} -3 nr
b = 2⇒c+d=1⇒cd∈{01,10}⇒abcd∈{6201,6210} -2 nr
b = 3⇒c+d=0⇒cd=00 ⇒ abcd = 6300 -1 nr
- a = 7 ⇒ b+c+d=2
b = 0⇒c+d=2⇒cd∈{02,20,11}⇒abcd∈{7002,7020,7011} -3 nr
b = 1⇒c+d=1⇒cd∈{01,10}⇒abcd∈{7101,7110} -2 nr
b = 2⇒c+d=0⇒cd=00 ⇒ abcd = 7200 -1 nr
- a = 8 ⇒ b+c+d=1
b = 0⇒c+d=1⇒cd∈{01,10}⇒abcd∈{8001,8010} -2 nr
b = 1⇒c+d=0⇒cd=00 ⇒ abcd = 8100 -1 nr
- a = 9 ⇒ b+c+d = 0
b = 0⇒c+d=0⇒cd=00 ⇒ abcd = 9000 -1 nr
Vei observa ca in funcție de ce valori ia a avem un anumit număr de numere ce respecta cerințele problemei: a = 1 avem 45 numere; a = 2 avem 36 numere; a=3 avem 28 numere; a = 4 avem 21 numere; a = 5 avem 15 numere; a = 6 avem 10 numere; a = 7 avem 6 numere; a = 8 avem 3 numere; a = 9 avem 1 număr
Total numere: 45+36+28+21+15+10+6+3+1 = 165 de numere de patru cifre care au suma cifrelor 9
Mult succes!!!
Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Sperăm că informațiile oferite v-au fost utile. Dacă aveți întrebări sau aveți nevoie de asistență suplimentară, nu ezitați să ne contactați. Așteptăm cu nerăbdare să vă revedem și nu uitați să ne salvați în lista de favorite!