👤

Nu pot rezolva cerinta asta scrieti numarul 5 la puterea 41 ca suma a cinci numere naturale consecutive

Răspuns :

[tex]5^{41}=x-2 + x-1 + x + x+1 + x+2 = 5x,\;deci\;x=\dfrac{5^{41}}5=5^{40}.\\\\Cele\;5\;numere\;sunt:\;5^{40}-2,\;5^{40}-1,\;5^{40},\;5^{40}+1,\;5^{40}+2.[/tex]

Green eyes.

a+a+1+a+2+a+3+a+4=5^41 5a+10=5^41 a=(5^41-10)/5 Numerele sunt: a1=(5^41-10)/5 a2=(5^41-10)/5+1 a3=(5^41-10)/5+2 a4=(5^41-10)/5+3 a5=(5^41-10)/5+4