[tex]Fie\ \overline{ab}\ si\ \overline{cd}\ numerele:\\
\overline{ab}+\overline{cd}=47\\
\overline{ba}+\overline{dc}=173\\
..........................\\
10a+b+10c+d=47\\
10b+a+10d+c=173\\
................................\\
Daca\ le\ adunam:\\
11a+11b+11c+11d=220\\
11(a+b+c+d)=220\\
a+b+c+d=20\\
Daca\ le\ scadem:\\
9b-9a+9d-9c=126\\
9(b-a+d-c)=126\\
b-a+d-c=14\\
Adunam\ cele\ doua\ relatii:\\
2d+2b=34\\
b+d=17\\
Cum\ a,b\leq 9,\ deducem\ doua\ solutii\ posibile:\\
a=9,b=8\ si\ a=8,b=9\\
[/tex]
[tex]Inlocuim:\\
17+a+c=20\\
a+c=3\\
Cum:a,c\geq 1\, deducem\ doua\ cazuri\ posibile:\\
a=1,c=2\ si\ a=2,c=1.\\
Asadar\ solutiile\ ecuatiei\ sunt:\\
S:(\overline{ab},\overline{cd})\in \{(18,29) ;( 19,28); (28, 19) ;( 29, 18)\}[/tex]