👤

Calculati sumele:
"^" la puterea
"/" supra
1. 1 + 1/2+1/2^2+1/2^3+...+1/2^100
2. 1+1/a+1/a^2+1/a^3+...+1/a^n
3. 1/1×2+1/2×3+...+1/n×(n+1), n apartine de multimea numerelor nat.
VA ROG ORICARE PUNCT REZOLVAT, MA AJUTA!! VA ROG!!


Răspuns :

3. 1/1×2+1/2×3+...+1/n×(n+1), n apartine de multimea numerelor nat.
1/1×2=1/1-1/2
1/2×3=1/2-1/3
1/3×4=1/3-1/4
......
1/n×(n+1)=1/n-1/(n+1)

se aduna toate fractiile

 1/1 - 1/2 + 1/2 - 1/3 +1/3 -1/4 + ... +1/n-1 - 1/n +1/n - 1/n+1
si dupa reducerea termenilor asemenea mai raman:(primul si ultimul termen)

1/1-1/n+1se aduce la acelasi numitor si va ramane: n/n+1

(n+1-1)/n+1=n/n+1
[tex]1.S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}} |\cdot \frac{1}{2}\\ \frac{S}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\\ ............................................-\\ S-\frac{S}{2}=1-\frac{1}{2^{101}}\\ \frac{S}{2}=\frac{2^{101}-1}{2^{101}} |\cdot 2 \\ \boxed{S=\frac{2^{101}-1}{2^{100}}}\\ \\ 2.S=1+\frac{1}{a}+\frac{1}{a^2}+\frac{1}{a^3}+...+\frac{1}{a^n} |\cdot \frac{1}{a}\\ \frac{S}{a}=\frac{1}{a}+\frac{1}{a^2}+\frac{1}{a^3}+....+\frac{1}{a^{n+1}}\\ [/tex]
[tex]............................................-\\ S-\frac{S}{a}=1-\frac{1}{a^{n+1}}\\ \frac{aS-S}{a}=\frac{a^{n+1}-1}{a^{n+1}}|\cdot a\\ S(a-1)=\frac{a^{n+1}-1}{a^n}\\ \boxed{S=\frac{a^{n+1}-1}{a^n\cdot(a-1)}}}\\ \\ 3.\frac{1}{1\cdot2}+\frac{1}{2\cdot 3}+...+\frac{1}{n(n+1)}\\ 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}=\\ 1-\frac{1}{n+1}=\boxed{\frac{n}{n+1}}[/tex]