👤

Determinati perechile de numere naturale(a, b) care satisfac egalitatea: [(a*b+408) / (646-573)]*10+1132=1192

Răspuns :

[(axb+408):73]x10+1132=1192
[(axb+408):73]x10=1192-1132=60
[(axb+408):73]=60:10=6
axb+408=6x73=438
axb=438-408=30
axb=30
1x30=30
2x15=30
3x10=30
5x6=30
: [(a*b+408) /(646-573)]*10+1132=1192
: [(a*b+408) /(646-573)]*10=1192-1132

: [(a*b+408) /(646-573)]*10=60

: [(a*b+408) /(646-573)]=60:10

(a*b+408) /(646-573)=6

(a*b+408) / 73=6

(a*b+408) =6*73

a*b+408=438

a*b=438-408

a*b=30

Perechile sunt (1,30),(2,15),(3,10),(5,6),(6,5),(10,3),(15,2),(30,1)