1/(1*2)=1/1-1/2
1/(2*3)=1/2-1/3
1/(3*4)=1/3-1/4
...
1/(n(n+1))=1/n-1/(n+1)
Deci a=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/n-1/(n+1)).
Se reduc: -1/2 cu +1/2; -1/3 cu +1/3; -1/4 cu +1/4; ...; -1/n cu 1/n.
Obtinem deci a=1/1-1/(n+1)=1-1/(n+1).
0<=a<1, oricare ar fi n numar natural, deci a={a}=0,999.
a=0,999 <=> 1-1/(n+1)=0,999 <=> 0,001=1/(n+1) <=> n+1=1/0,001 <=> n+1=1000 <=> n=999.
In concluzie, n=999.