(1+2+3+4+...+100)-(27+28+29+..+99)
(1+2+3+4+...+100)=n(n+1)]:2=(100×101):2=5050 (suma Gauss)
S1=5050
S2=(27+28+29+..+99)
-progresie aritmetica
an=99
a1=27,
r=1
an=a1+(n-1)×r
99=27+(n-1)×1
99=27+n-1
99-27+1=n
n=73
S2=(an+a1)×n]:2=(27+99)×73]:2=4599
S=S1-S2=5050-4599
S=451