BD'= √(AB²+AD²+AA'²)
BD'=√(36+16+38)=√(36+64)=√100=10cm
d(A, BD')=inaltimea corespunzatoiare ipotenuzei in tr drD'AB
tr AD'B dreptunghic in A , pt ca
AB⊥(A'AD)⇒AB⊥AD'⊂(A'AD)
fie AM⊥BD', M∈BD'
AM=cateta1*cateta2/ipotenuza= AD'*AB/BD'
AD' =√(AA'²+AD²)=√48+16=√64=8
AB=6 (ipoteza)
BD'=10 (punctuil a) )
AM= 6*8/10=4,8 cm