(1+i√3)=2*(1/2+i√3/2)
cosx=1/2 si sinx=√3/2 =>x=π/3
Numarul devine
(cosπ/3+isinπ/3)^12=se aplica formula lui Moivre=(cos12*π/3+isin12*π/3)=
cos(4π/3+isin4π/3)=1/2-√3/2
-1/2+i√3/2=(esti in cadranul 2)=cos2π/3+isin2π/3
(cos2π/3+isin2π/3)^15=conf <Moivre=cos15*2π/3+isin15*2π/3=cos10π+isin10π=cos5*2π+isin5*2π=1+0=1
deoarece pt arcele de forma k*2π cosinusul e 1 si sinusul 0