cos x=(1-t²)/(1+t²) unde t=tgx/2 x/2 =arctgt x=2arctgt dx=2dt/(1+t²)
I=∫2dt/(1+t²)*[(1-t²)/(1+t²)]=2∫dt/(1-t²)= -2∫dt/(t²-1)= -2*1/2lnl(t-1)/(t+1)l=
-lnl (t-1)/(t+1)l+c=ln ll(t²+1)/(t²-1)l+c=ln l(sin²x/2)/cos²x/2+1)/(sin²x/2/cos²x/2-1)l=ln l1/(sin²x/2-cos²x/2)l+c=lnl1/-cosxl+c=ln l1/cosxl+c