b)E (x) = [1/(x^2-x-2) + 1/(x+1) - 1/(2-x)] :[2x/(x^2-4)]=
=[1/(x+1)(x-2) +1/(x+1) +1/(x-2)]*[(x^2-4)/2x]=
=[1/(x+1)(x-2) +(x-2)/(x+1)(x-2) +(x+1)/(x+1)(x-2)]*[(x-2)(x+2)/2x]=
=[(1+x-2+x+1)/(x+1)(x-2)]*[(x-2)(x+2)/2x]=
=[2x/(x+1)(x-2)]*[(x-2)(x+2)/2x]=2x(x-2)(x+2)/2x(x+1)(x-2)=
=(x+2)/(x+1)
a)
Toti numitori care apar in expresie si de-a lungul demonstratiei tb. sa fie diferiti de zero:
''d''=diferit
x^2 -x-2 d 0, (x+1)(x-2) d 0, x d -1 si +2
x+1 d 0, x d -1
2-x d 0, x d +2
x^2 -4 d 0, (x-2)(x+2) d 0, x d -2 si +2
2x d 0, x d 0
Asadar x diferit de {-2,-1,0,2}