👤

(A,B)=15
AxB= 1350
A=?
B=?


Răspuns :

daca (a,b)=15 ⇒exista numerele naturale prime intre ele m si n astfel incat
a=15m
b=15n
inlocuim in produs
15m·15n=1350
mn=6
pentru ca m si n sa fie prime intre ele avem cazurile
1. m=1, n=6 ⇒a=15, b=90
2. m=2, n=3⇒ a=30, b=45
3. m=3, n=2 (este invers ca la 2)
4. m=6, n=1 (invers ca la 1)
solutiile sunt perechile de numere
S={(15,90), (30,45), (45,30), (90,15)}
∅ Rezolvare :



______________________________________

→ ( a,b ) = 15 → a = 15x si b = 15y →
_______________________________________

→ ( x,y ) = 1
________________________________________


→ a • b = 1 350 → 15x • 15y = 1 350
_________________________________________


x • y = 1 350 : 225 = 6 y = 6 →
__________________________________________

y = 1 → x = 6 → a = 15 • 6 → a = 90 → b = 15 • 1 → b = 15
___________________________________________

y = 2 → x = 3 → a = 15 • 3 → a = 45 → b = 15 • 2 → b = 30
___________________________________________

y = 3 → x = 2 → a = 15 • 2 → a = 30 → b = 15 • 3 → b = 45
___________________________________________

y = 6 → x = 1 → a = 15 • 1 → a = 15 → b = 15 • 6 → b = 90
___________________________________________


S = { ( 90 , 15 ) , ( 45 , 30 ) , ( 30 , 45 ) , ( 15 , 90 ) }

____________________________________________