m(BA'C) =90°, rezulta tr. A'BC=tr. dreptunghic isoscel
Aplicam Pitagora: BC^2=2(A'B^2)
(A'B^2)=(BC^2)/2=36/2=18
A'B=3V2, ''V''=radical
AA'_l_alfa, rezulta AA'_l_A'B, deci tr. AA'B=tr.dreptunghic
Aplicam si aici Pitagora:
AA'^2=(AB)^2 /2=6^2 /2=18
AA'=3V2
tg A'BA=AA'/A'B=3V2 /3V2=1
tg A'BA=1