Răspuns :
|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|#OptiTeam|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|
✤ Cerință: Află toate numerele naturale care împărțite la 6 dau câtul egal cu restul.
✤ Răspuns:
✤ Ne vom folosi de TEOREMA ÎMPĂRȚIRII CU REST.
d : î = c și r ⇒ d = î × c + r
✤ Unde: → d = deîmparțitul
→ î = împărțitorul
→ c = câtul
→ r = restul
✤ În cazul nostru împărțitorul este 6. Restul împărțirii trebuie să fie ( OBLIGATORIU ) mai mic decât împărțitorul. Nu luăm restul 0 deoarece câtul nu poate fi 0.
r < î ⇒ restul ∈ { 1 ; 2 ; 3 ; 4 ; 5 } ⇒ câtul ∈ { 1 ; 2 ; 3 ; 4 ; 5 }
d : 6 = 1 rest 1 ⇒ d = 6 · 1 + 1 ⇒ d = 6 + 1 ⇒ d = 7
d : 6 = 2 rest 2 ⇒ d = 6 · 2 + 2 ⇒ d = 12 + 2 ⇒ d = 14
d : 6 = 3 rest 3 ⇒ d = 6 · 3 + 3 ⇒ d = 18 + 3 ⇒ d = 21
d : 6 = 4 rest 4 ⇒ d = 6 · 4 + 4 ⇒ d = 24 + 4 ⇒ d = 28
d : 6 = 5 rest 5 ⇒ d = 6 · 5 + 5 ⇒ d = 30 + 5 ⇒ d = 35
✤ Soluție: Numerele sunt 7 ; 14 ; 21 ; 28 ; 35.
|__________________|#OptiTeam|__________________|
Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Sperăm că informațiile oferite v-au fost utile. Dacă aveți întrebări sau aveți nevoie de asistență suplimentară, nu ezitați să ne contactați. Așteptăm cu nerăbdare să vă revedem și nu uitați să ne salvați în lista de favorite!