1) [1/x+1(x+2)][2+(x^2-2)/(x+1)]=
[(x+2)/(x^2+2x)+x/(x^2+2x)][(2x+2)/(x+1)+(x^2-2)/(x+1)= 2(x+1)/x(x+2)•(2x+x^2)/(x+1)= 2(x+1)/x(x+2)•x(2+x)/(x+1)=
2/(x+2)•(x+2)/1=2/1=2.
3)(5X+1)(x^2+x)/(x^2-x)(x^2+x)=
(5x^3+x^2+5x^2+x)/(x^4-x^2)=
(5x^3+6x^2+x)/(x^4-x^2)=x(5x^2+6x+1)/(x^4-x^2).