f:R-> R,f(x)=2x-6
Gf∩Ox=A(x,0)
A(x,0)∈Gf⇒f(x)=0
f(x)=2x-6
2x-6=0
2x=6
x=3 ⇒ A(3,0)
Gf∩Oy=B(0,y)
B(0,y)∈Gf⇒f(0)=y
f(0)=-6
⇒B(0,-6)
Cu teorema lui pitagora in ΔAOB avem:
AB²=AO²+OB²
AB²=9+36
AB²=45⇒AB=3√5 cm
Fie M∈(AB),OM⊥AB
d(O,Gf)=OM
Cu teorema inaltimii avem:
OM=AO*OB/AB
OM=3*6/3√5
OM=6√5/5 cm....