[tex]
2^{6n}~|~(8^{2n+1}+4^{3n+1}-11\times 64^n)\\ \\
\text{Rezolvare: } \\ \\
8^{2n+1}+4^{3n+1}-11\times64^n=\\
= 8^{2n}\times8+4^{3n}\times4-11\times 64^n=\\
=8\times(2^3)^{2n}+4\times(2^2)^{3n}-11\times(2^6)^n=\\
=8\times2^{3\times2n}+4\times2^{2\times3n}-11\times2^{6\times n}=\\
=8\times2^{6n}+4\times2^{6n}-11\times 2^{6n}=\\
2^{6n}\times(8+4-11) 2^{6n}\times1 = \boxed{2^{6n}} \\ \\
\boxed{2^{6n}~|~2^{6n}}[/tex]